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SUMMARY

Grid related issues of the Chimera overset grid method are discussed in the context of a method of solution
and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support
software required to use the approach is considered. Current limitations of the approach are identified.

INTRODUCTION

Unsteady three-dimensional viscous flow represents an important class of problems for which accurate
methods of prediction are frequently required. Such applications are almost always complicated geometrically,
may also involve relative motion between component parts, and exist in virtually all engineering disciplines.
Experimental methods of analysis, including scale-model and full-scale prototype testing, are often not possible
due to excessive cost, model limitations, human safety factors, and time-constraints associated with a commer-
cially competitive environment. Mature computational methods are not always appropriate due to inherent method
limitations. Unsteady viscous flowfields involving vortical wakes, interference effects, moving shocks, and body
motion demand the most advanced computational means available.

Currently, the only viable high-order method of prediction for these problems is the so called Chimera (ref.
1) overset grid approach. The approach involves the decomposition of problem geometry into a number of geomet-
rically simple overlapping component grids. Multiple-body applications, such as aircraft store-separation (refs. 2-
7), are treated naturally in this way. Components of a particular configuration can be altered, or changed com-
pletely, without affecting the rest of the grid system (ref. 8). Grid components associated with moving bodies move
with the bodies without stretching or distorting the grid system. The approach is applicable to both internal and
external flow applications, though most of the Chimera-related algorithm development has thus far been motivated
by external flow applications.

The computational incentives for employing an overset grid approach for unsteady three-dimensional vis-
cous flows are multiple. The flow solution process is applied to topologically simple component grids. Body-fitted
compaonent grids are ideally suited to regions of thin shear flows such as viscous boundary-layers, wakes, etc. All
the advantages associated with structured data are realizable in the approach, including highly efficient implicit
flow solvers, memory requirements, vectorization, and fine-grained parallelism. Grid components can be arbitrarily
split to optimize the use of available memory resources. Overset structured grid components provide a natural
coarse-grained level of parallelism that can easily be exploited to facilitate simulations within distributed comput-
ing environments (refs. 9-12).

The present paper considers the current status of the Chimera-style overset grid method as it applies to
unsteady three-dimensional viscous flow. Of course, much of what can be said of Chimera in this context is also
true for steady-state (viscous and inviscid) applications. The paper includes discussion on the state of maturity of
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the various pieces of support software required to use the approach, including grid, and flow-solver related issues.
Current limitations of the approach are identified and used to suggest needs for future developmental efforts.

THE CHIMERA OVERSET GRID APPROACH

Background

In a Chimera-style overset grid approach, domain connectivity is achieved through interpolation of neces-
sary intergrid boundary information from solutions in the overlap region of neighboring grid systems. Consider, for
example, the simple two grid discretization of the airfoil shown in figure 1.

The example problem domain is decomposed into a body-fitted grid system near the airfoil surface and a
background Cartesian grid system which extends out to the far-field boundaries. The Cartesian grid completely
overlaps the airfoil grid. Clearly, the airfoil grid outer boundary conditions can be interpolated from a solution in
the off-body Cartesian grid, thereby providing the needed off-body to near-body connection for solution informa-
tion transfer. It is also clear that a similar transfer of information from the near-body solution back to the off-body
solution is required. However, the off-body Cartesian grid has no natural boundaries (physical or numerical) that
overlap the near-body grid. The Chimera style of overset gridding makes it possible to create an artificial boundary
(hole boundary) within the off-body grid system, and thereby establish the required near-body to off-body connec-
tivity.

A hole boundary for this example is created by excluding the region of the off-body Cartesian grid that is
overlapped by the airfoil. The resulting hole region is excluded from the remaining off-body solution. Conditions
for the hole boundary are interpolated from the solution in the near-body airfoil grid. In general, one-way commu-
nication connections can be established between any set of component grids through hole and outer boundaries.
Generalized algorithms for carrying out this task automatically have been developed (refs. 13-19).

Grid Related Issues

Surface decomposition and surface grid generation represent the primary impediments to the maturation of
overset grid based methods. The amount of human resources, measured in time and expertise, currently required to
generate suitable systems of overset grids for complex configurations lends validity to the notion that the approach
is only an intermediate option, and that unstructured grid approaches will ultimately represent the method of choice
for this class of problems. Even if this scenario becomes real, it is currently based on the false assumption that grid
generation for structured overset grids is a mature discipline. It also greatly devalues the numerous computational
advantages realizable through the use of structured data.

The current difficulties associated with surface decomposition and surface grid generation for overset grid
systems exist for the simple reason that there has been virtually no research directed at this area. Available struc-
tured grid generation software has been developed almost exclusively for “patched,” or “blocked” systems (refs.
20-23) which require neighboring grid components to share a common surface. Although differences between
overset and blocked methods may appear slight (i.e., one requires neighboring grids to overlap and the other
doesn’t), the differences are in fact profound. An overset grid approach is really an unstructured collection of over-
lapping structured grid components. As such, the approach should enjoy most of the grid generation freedoms asso-
ciated with unstructured grids, and retain, on a component-wise basis, all of the computational advantages inherent
to structured data.

Surface Geometry Decomposition. A good philosophy for a surface geometry decomposition software
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package might be to use the fact that all real objects can be viewed as composites of point and line discontinuities,
and simple surfaces. For example, the sharp tip of a nose-cone would be a point. Likewise, sharp edges along a
fuselage, the trailing edge of a wing, etc. are lines. All object areas that are not associated with points or lines are
simple surfaces. Whether an object area corresponds to a point, line, or simple surface dictates the type of surface
grid, and hence, volume grid topology that should be used for the overset grid discretization. A point suggests the
need for a “nipple” topology for the object area in the vicinity of the point, and an axis topology for the resulting
volume grid. A line suggests the need for grid clustering near the line to maintain the integrity of the line disconti-
nuity in the overset grid component. Surface grids associated with line discontinuities lend themselves directly to
hyperbolic surface grid generation techniques. Simple surfaces are amenable to either algebraic or elliptic surface
grid generation methods. In an overset grid approach, surface grids associated with all object types (i.e., points,
lines, and simple surfaces), are amenable to volume grid generation via hyperbolic methods.

Figure 2a illustrates a panel definition of a tiltrotor surface geometry. Object point and line discontinuities
are indicated. A point discontinuity exists at the tip of the nose-mounted pitot tube. Line discontinuities exist at the
wing/fuselage intersection, wing trailing edge, nacelle exhaust exit, and along the fuselage/sponson crease. One
possible surface decomposition of this geometry definition is shown in figure 2b, where no point discontinuities
were retained (pitot-tube and mount were neglected at the discretion of the analyst), but line discontinuities were
resolved around the wing/fuselage intersection, wing trailing edge, and fuselage/sponson crease. The line disconti-
nuity at the nacelle exhaust exit was smoothed over (at the discretion of the analyst) and treated as a simple surface.
As illustrated by figure 2b, the surface grids that result from this method of surface geometry decomposition is a
quilt of overlapping surface components.

Surface Grid Generation. Given a suitable surface geometry decomposition, generation of a corresponding
set of overset surface grid components should be realizable in a highly automated way. Most of the basic algo-
rithms needed to develop such software currently exist. Algebraic and elliptic surface grid generation techniques,
appropriate for simple surfaces, have long been available (ref. 24). The idea for hyperbolic surface grid generation
was first put forward more recently (ref. 25), and has since been generalized (ref. 26).

Volume Grid Generation. Generation of volume grids associated with body surfaces can easily be gener-
ated in an overset grid approach using hyperbolic grid generation techniques. Hyperbolic volume grid generators
exist that are robust, highly efficient, and very easy to use (ref. 27,28). In an overset grid approach, generation of
off-body volume grids is a trivial task. The near-body set of grid components must simply be overset onto a conve-
nient background system of grids. While few software packages are currently available to perform the task of off-
body grid generation automatically, the task is still trivial and some software is becoming available (ref. 29).

Domain Connectivity. A considerable amount of research and development in the area of domain connec-
tivity among systems of overset grids has been carried out. Several general purpose algorithms for performing this
task automatically are currently available. Although existing domain connectivity algorithms can still be improved
in terms of efficiency and automation, this area of overset grid technology is maturing rapidly. Active areas of
domain connectivity research include Chimera-style hole-cutting (refs. 17-19), donor search methods (including
quality optimization) (refs. 14,17,19), automation (refs. 14,17-19), and parallelization (ref. 10).

The first general purpose domain connectivity algorithms that became widely available are the PEGSUS
(ref. 13) and, later, CMPGRD (ref. 14) codes. Both codes enjoy substantial use among overset grid practitioners.
Likewise, algorithm development associated with both codes is ongoing. In 1989 the first simulations of unsteady
three dimensional viscous flow applications involving moving bodies (ref. 3) were carried out using a script con-
trolled application of PEGSUS and the F3D thin-layer Navier-Stokes solver (ref. 30). The need for greater compu-
tational efficiency to carry out such applications, which require domain connectivity every time-step, spawned
development of alternative domain connectivity algorithms. The DCF3D (ref. 15) and BEGGAR (ref. 17) codes
were designed to accommodate moving body applications and are currently the only domain connectivity algo-
rithms that are fully integrated with general purpose flow-solvers and body dynamics algorithms.
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Flow Solver Related Issues

A major advantage of an overset grid approach for solving unsteady three-dimensional viscous flow prob-
lems is the fact that existing single grid (structured) flow solvers of documented accuracy and known efficiency can
easily be adapted for application within overset grids. For example, the implicit approximately factored algorithm
(i.e., block Beam-Warming, ref. 31) for the thin-layer Navier-Stokes equations
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is easily modified for Chimera-style overset grids as
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The single and overset grid versions of the algorithm are identical except for the variable i p» Which accom-
modates the possibility of having arbitrary holes in the grid. The array i, has values of either 0 (for hole points), or
1 (for conventional field points). Accordingly, points inside a hole are not updated (i.e., AQ = 0) and the intergrid
boundary points are supplied via interpolation from corresponding solutions in the overlap region of neighboring
grid systems. By using the i, array, it is not necessary to provide special branching logic to avoid hole points, and
all vector and parallel properties of the basic algorithm remain unchanged.

Solution Accuracy and Conservation. A common criticism of overset grid approaches relates to the fact
that simple interpolation is often used to establish needed domain connectivity. Of course, the use of simple inter-
polation implies that conservation is not strictly enforced. However, assuming the basic flow solver is conservative,
conservation is maintained at all points in the domain except at a few intergrid boundary points. The subject of con-
servation on overlapping systems of grids has been studied by a number of researchers, including (refs. 32-34). In
light of the significance typically placed on this subject, several points need to become generally recognized.

First, formal flow solver solution accuracy can be maintained using simple interpolation (refs. 33-35). For
example, in a grid refinement study, if the position of component grid outer boundaries remains fixed with increas-
ing resolution of the several grid components, the formal accuracy of a 2nd order flow solver will be maintained
with an interpolation scheme that is 2nd order accurate (i.e., tri-linear interpolation of the dependent flow vari-
ables).

Second, the primary issue with interpolation of intergrid boundary information is not necessarily one of
conservation, but one of grid resolution. If a flow solution is represented smoothly in both donor and recipient
grids, simple interpolation is sufficient to carry out simulations that are accurate in all respects. In practical applica-
tions, given a fixed number of grid points, it is not possible to provide grid resolution of sufficient density to guar-
antee that flow features will always be smoothly represented in the grids. If a conservative interpolation scheme is
used at intergrid boundaries, the speed and structure of flow features (i.e., shocks, vortices, etc.) may appear contin-
uous across grid interfaces. However, lacking sufficient grid resolution, the accuracy of the solution can not be
ensured in any case. Hence, grid resolution is the primary issue.

Third, the objective of adaptive grid techniques is to ensure smooth variation of flow variables throughout

the computational domain. Accordingly. an effective adaptive grid technique appropriate for systems of overset
grids should be viewed as the primary remedy for issues relating to conservation at grid interfaces.
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Finally, methods are available for maintaining conservation at grid interfaces. Although complicated, spe-
cial interpolation schemes that maintain conservation at grid interfaces have been developed (ref. 36). Interpolation
of delta-quantities (Q - "), rather than the dependent flow variables (Q ) at grid interfaces has also been
suggested as a means for ensuring space-time conservation over the entire domain (ref. 37). Perhaps the most gen-
eral approach is that of introducing an unstructured grid in the vicinity of the intergrid boundaries (ref. 38) and
employing an appropriate solver on the unstructured grid interface. Such a hybrid approach would still have all the
advantages of using structured data. Use of an unstructured solver would only be required for a small fraction of
the overall domain.

Somewhat less complicated schemes for ensuring conservation at grid interfaces are possible for incom-
pressible flows. Non-conservative interpolation of intergrid boundary conditions can be made conservative by local
redistribution of fluxes such that global conservation is ensured (refs. 39,40).

Adaptive Grid Techniques. The subject of adaptive grids has a very large literature. It is clearly not the aim
to review this subject here. However, some discussion on the various types of adaption and their respective
strengths and weaknesses for application within overset systems of structured grids is provided. The broad class of
adaption methods that redistribute a fixed number of points in response to evolving flow features (refs. 41-43) are
not considered here. Although such an approach could be implemented within an overset system of grids, there are
other methods of adaption that appear to be more general.

Currently, the most popular method of adaption appears to be unstructured cell subdivision. Indeed, the
approach is very powerful and general. The approach has been exploited within Cartesian systems, as well as more
traditional unstructured grid systems (see figure 3). In either case, the data is unstructured. In the approach, the geo-
metric components of the problem and volume of the domain are discretized with a base grid system. Then, in
response to evolving flow features, grid points are added to the base grid by local cell subdivision. Points added to
the base grid can be later removed when no longer needed (refs. 44-47). The strength of the approach is that it effi-
ciently allocates grid-points where they are required to maintain solution accuracy. There are several ways in which
the approach could be implemented within systems of overset structured grids. The principal drawbacks to the
approach are the memory and computational penalties associated with the requisite unstructured data. One possible
implementation of this type of solution adaption within an overset structured approach is illustrated in figure 4. The
implementation is a hybrid Chimera structured overset grid/unstructured solution adaption algorithm (ref. 49). In
the approach, high resolution body-fitted structured grids are used near the bodies (which may move) and are over-
set onto an unstructured background grid. The bodies cut Chimera holes in the background unstructured grid. All
off-body solution adaption is carried out in the unstructured grid using the approach described in (ref. 45).

Another class of solution adaption described in the literature utilizes systems of nested fine overset struc-
tured grids. The first such approach suggested the use of nested Cartesian grids (ref. 50) to align with flow features
and maintain solution accuracy. Variations of the original approach have continued in the literature and have found
application in Cartesian based solution procedures for geometrically complex applications (ref. 51). The basic
approach is not limited to Cartesian grids, but can be applied in computational space as well for structured curvilin-
ear grid systems (ref. 52).

A pure Chimera approach to solution adaption has also been explored (refs. 34,53,54). In this approach,
structured fine grids are used to resolve flow features with coarse-to-fine and fine-to-coarse grid communication
being accomplished via traditional Chimera domain connectivity methods (see figure 5).

Various alternatives to a pure Chimera approach to adaption have also been suggested (refs. 29,54). The
approach favored by the author is described in (ref. 29) and divides the solution domain into near-body and off-
body regions. Near-body regions of the domain are discretized with high-resolution body-fitted component grids
that extend a relatively short distance from body surfaces. The method of adaptive refinement is designed to pro-
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vide resolution of off-body dynamics subject to the motion of flow features and/or body components. The off-body
portion of the domain is defined to encompass the near-body domain and extend out to the far-field boundaries of
the problem. The off-body domain is filled with overlapping uniform Cartesian grids of variable levels of refine-
ment. All adaptive refinement takes place within the off-body component grids. Initially, regions of the off-body
field are marked for refinement level based on proximity to near-body boundaries. However, during the solution
process, the off-body field is marked for refinement level based on proximity to near-body boundaries and esti-
mates of solution error. Subsequent to refinement level marking, off-body regions of like resolution are coalesced
into rectilinear blocks of space, each block becoming a uniform Cartesian grid. Accordingly, at any time during the
simulation, the off-body field is discretized with a set of overlapping uniform Cartesian grid systems of varying
levels of refinement. The approach is illustrated in figure 6.

The obvious advantages of the overset structured methods of refinement noted above relate to the compu-
tational and memory incentives inherent with structured data. The Cartesian based methods noted in (refs. 29,51)
offer additional advantages derivable from multiple characteristics of Cartesian systems. For example, no memory
is required for grid related data for uniform Cartesian grid components except for the two points that define the
diagonal of a box which bounds the grid component and the grid spacing constant. Domain connectivity among
systems of uniform Cartesian grids is trivial. Also, highly efficient flow solvers for Navier-Stokes equations on uni-
form Cartesian grids can be employed.

CONCLUDING REMARKS

A review of even a small sample of recent applications of overset methods for unsteady three-dimensional
viscous flow situations will clearly demonstrate the power and generality of the overall approach. Highly complex
geometric configurations can be accurately simulated, including cases involving relative motion between compo-
nent parts.

All the advantages associated with structured data are realizable in the approach, including highly efficient
implicit flow solvers, memory requirements, vectorization, and fine-grained parallelism. Grid components can be
arbitrarily split to optimize the use of available memory resources. Decomposition of problem domains into a num-
ber of overlapping components creates a coarse-grained level of parallelism that can easily be exploited to facilitate
simulations within distributed computing environments.

The subject of surface geometry decomposition for overlapping systems has been heretofore ignored and
currently represents the largest impediment to the maturation of Chimera-style overset grid methods. Existing sur-
face grid generation software for blocked, or patched, grid systems do not allow full exploitation of the inherent
advantages of overlapping grid systems. Research in this area is badly needed. Other aspects of the Chimera-style
overset grid approach are maturing more rapidly. These include algorithm development and generalization for
domain connectivity, volume grid generation, surface grid generation, parallel computing, and solution adaptive
grid techniques.
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Figure 1. —An example of Chimera intergrid bound-
ary points

Figure 2. — Surface geometry of a tiltrotor
aircraft. a) Panel definition (note indicated
point and line discontinuities). b) Quilt of
overlapping surface grid components. Com-
ponent grids retain the line discontinuities
indicated in the original panel definition of
the geometry.
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Figure 3. — Solution adaption via cell subdivision. a) Unstructured Cartesian cell subdivision (ref. 44). b) Conven-

tional unstructured cell subdivision (ref. 48).
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Figure 4. — Hybrid structured Chimera overset/unstructured solution adaption. a) High-resolution body-fitted struc-
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tured grid (viscous) for rotor blade. b) Unstructured background grid for solution adaption of off-blade vortex

dynamics (ref. 49).
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Figure 5. — Solution adaption via overset structured fine grids. Base grid (medium resolution body-fitted airfoil grid
and background Cartesian grid) plus 5 overset fine grid components (ref. 34).
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gure 6. — Solution adaption via off-body uni-
form Cartesian structured grids (high-resolu-

O D O e e L tion body-fitted grids are used to discretize
s Soaans.inaust _5:“:*;; sSiEisauaganl Jt-” :ﬁ:: i space near physical boundaries) (ref. 29).
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